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Abstract 

The backscattering of sound from two regularly arranged bubbles is studied theoret- 

ically and experimentally. In well-controlled laboratory experiments a bistatic acoustic 

system is used to interrogate the scatterers, which are placed on a very fine thread 

at the same distance d from the combined beam axis of the set of transmitting and 

receiving transducers. The radius of each bubble is 585 ^m. The frequency range is 

80-140 kHz, and d is varied so that the variable kd spans the range 0.2-21, where k 

is the acoustic wavenumber. Scattering calculations are carried out using an exact, 

closed-form solution derived from the multiple scattering series. Several experiments 

are performed, and the results are in close agreement with the calculations. It is veri- 

fied that multiple scattering induces an oscillatory behavior about the exact coherent 

scattering level, with decreasing amplitude for increasing kd. For interbubble distance 

2d « A/2 the backscattered radiation is maximized, while for 2d < A/2 the radiation 

is reduced considerably. These and other effects are discussed. 
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Introduction 

Understanding the physical processes that develop when sound traverses through and scatters 

from a dense assemblage of scatterers is of great importance in a number of applications, 

such as scattering from oceanic bubble clouds [1], schools offish [2], plankton [3], ultrasonic 

contrast agents [4], and blood [5]. In such cases, multiple scattering complicates the inverse 

scattering problem of extracting information about the scatterers or the scattering medium 

from the acoustic field at the receiver. In this paper, we address a component of the forward 

problem pertaining to multiple scattering. The fundamental question we seek to answer is 

how the backscattered wave is affected by varying the center-to-center distance, 2d, between 

two bubble scatterers symmetrically arranged about the combined beam axis. Subsequent 

discussions and analysis will refer to air bubbles in water, although the general theory is not 

restricted to such. 

Consider an assemblage of bubbles with mean inter-bubble distance 2d, insonified by a 

plane wave with wavelength A. For a sparse assemblage of bubbles, say 2d 3> A, that are 

randomly spaced (as could be the case for some oceanic bubble clouds), the possibility of 

interaction between the individual bubbles is small, and multiple scattering effects can be 

neglected (e.g., see Morse and Ingard [6]). Therefore, the Born approximation is valid, and 

it can be shown that the total (incoherent) scattered intensity per unit incident intensity at 

a point in the field assumes a linear dependence between the number of bubbles and their 

total scattering cross section. However, for regularly spaced (and sparse) assemblages the 

total intensity at the receiver is the result of coherent scattering, and is therefore equal to the 

square of the sum of the individual scattered pressures. For dense assemblages, say 2d < A 

(as could be the case for bubble clouds very close to the surface or those associated with 

surf zones), the theoretical analysis is more complicated, because the interactions between 

the bubbles play a definite role in the development of the scattered field. These interactions 

include, among others, multiple scattering. 

In multiple scattering the field scattered from each element depends both on the incident 

wave from the source and on the waves scattered by all other elements in the scattering 



volume. It is possible to write a series of scattering terms to obtain the acoustic field at the 

receiver. However, this series is infinite and also will become quite intractable for a large 

number of scatterers. One approach that simplifies the problem is to perform a partial sum- 

mation on only the most important contributions to the series (e.g., see Refs. [7] and [8]). 

Another simplification that incorporates multiple scattering effects is to treat the volume 

occupied by the bubbles as a continuous one with some equivalent density and compress- 

ibility. Such a solution, offered in 1945 by Foldy [9], is the "effective medium" model. This 

approach is based on averaging the acoustic field scattered by a large number of omnidi- 

rectional scatterers governed by a spatial Poisson distribution. Since then other researchers 

have improved on Foldy's effective medium model by adding small corrections [10], [11], 

[12]. The effective medium approximation has been successfully compared with experimen- 

tal data from random assemblages for insonifying frequencies that do not correspond to the 

resonance frequency of the bubbles. For example, Commander and Prosperetti [1] used the 

model to analyze five different data sets, and the results showed good agreement between 

theory and experiment, even for volume fractions up to 10%, a rather remarkable result. 

In contrast, a survey of the available literature showed that very little data exist from 

well-controlled laboratory experiments for which deterministic multiple scattering effects 

could be studied. One exception we are aware of is the work by Bj0rn0 and Bj0rn0 [8], who 

used two stainless steel spheres in the laboratory to study the effects of sphere separation 

and angle of incidence on the backscattering of sound and compared the results with a simple 

model. 

In this paper we derive a solution to a specific scattering problem using the multiple 

scattering expansion approach and compare it with experimental results. The experimental 

data consist of measurements of the pressure field backscattered from two nearly identical 

bubbles symmetrically placed the same distance d from the combined beam axis of the 

acoustic transmit and receive beams. The radius a of each bubble was (585 ± 35) //m, with 

ka ranging from 0.2-0.35, where k is the acoustic wavenumber for the surrounding medium. 

The primary independent variable was d, and kd spanned the range from 0.2-21. In Sec. 1 



the multiple scattering series is established and a closed form solution is derived, and in Sec. 2 

the frequency response of a single bubble in water is reviewed. The experimental platform 

and the procedure are described in detail in Sec. 3, which includes the consideration of effects 

brought about by the geometry of the system. The experimental results are compared with 

the scattering model in Sec. 4, and found to be in good agreement, and a summary of the 

work is given in Sec. 5. 

1    Multiple scattering theory 

The simplest problem in multiple scattering is one involving just two identical, stationary 

scatterers symmetrically insonified by a plane wave at normal incidence. Intuition suggests 

that in such a case scattering will be completely coherent, since no randomness exists in 

the location of the scatterers or any other parameter. Various methods have been used to 

investigate this problem theoretically. For example, Twersky [13] obtained a closed form 

solution for two identical and isotropic scatterers insonified by single-frequency plane waves 

in terms of the scattering function of one of the scatterers. He went on to develop a set 

of equations that could be applied to problems involving arbitrary scatterers and angles of 

incidence. Twersky's work provides an intuitive description of the scattering process, one 

that can be extended to a variety of problems (for example see the work by Tolstoy [14], 

[15] on superresonant systems). Gaunaurd et al. [16] performed a partial summation of 

the multiple scattering series in terms of spherical harmonics and derived a pair of coupled 

equations that describe acoustic scattering by a pair of rigid and soft spheres for arbitrary 

angles of incidence. However, for the particular cases modeled the spheres were in the far 

field of each other, thereby mitigating strong multiple scattering effects. In this paper the 

multiple scattering series expansion will be used since for simple problems it is tractable and 

allows proper accounting of scattering terms of all orders. 

The problem under consideration is the scattering of sound by a pair of bubbles (Fig. 1). 

A bistatic system is utilized to insonify the pair and receive the scattered pressure field in 
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Figure 1: Geometry of the scattering problem (not to scale). 

the frequency range 80 kHz to 140 kHz. The bubbles are of the same size, undeformed, and 

held fixed within the far field of the transducers. The speed of sound in the water is constant 

(c = 1490 m/s), and the losses due to attenuation are negligible. 

The complex pressure of the acoustic wave incident on bubble B\ due to the source can 

be written (dropping the e~lujt term) as 

eikRSi 

Psi = Po- 
Rsi 

and the pressure incident on bubble Z?2 as 

PS2 = Po- 
Rs2 

(1) 

(2) 

Assuming that the pressure field scattered from each bubble propagates in the medium 

according to spherical spreading, even in the near field of the bubble (see Appendix A for 

justification of the assumption), the pressure of the acoustic field at the receiver due to 

bubble JE?i becomes 

PSIR = PsifßiiÖsBiR, RIR)- 

JkR1R 

Ri R 

and that due to bubble Bo becomes 

PS2R = PS2fB2{9sB2R-> R2R.)- 

,ikR2R 

R2R 

(3) 

(4) 



In Eqs. (1), (2), (3), and (4) RSi and RS2 are the distances from the source to bubbles Bx 

and #2, respectively, RxR and R2R are the distances from the two bubbles to the receiver 

and fBl and fB2 are the complex scattering functions of each bubble. The complex scattering 

function fß{0,r) determines the amplitude and phase of the scattered wave at a distance r 

from the center of the bubble and angle 6 with respect to the incident plane wave. The 

scattering angles associated with the problem are shown in Fig. 2. The scattering function 

will be discussed in more detail in Sec. 2. 
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Figure 2: Scattering angles for the two bubble problem. 

In the following we adopt a shorthand notation for the spherical spreading propagation 

terms, as V^ = eikR^/RK^, with RK£ assuming the representation of the four distances noted 

above, namely, RSi, Rs2, RIR and R2R. Looking ahead, the bubble-to-bubble distances Rl2 

and R21 will also be used in subsequent calculations, with the corresponding propagation 

terms expressed as V12 and V2\. The distances between the various elements can be cal- 

culated with the aid of the position vectors constructed from the known geometry of the 

system. Substitution of Eqs. (1) and (2) into Eqs. (3) and (4) and summation of the latter 



will give the complex pressure field at the receiver due to single scattering, 

PSingleScatter = Po {PsJßliQsBxR-, R\R)V\R + Vs2?B2(&SB2R5 #2^)7*2^]  • (5) 

Note that for two stationary bubbles symmetrically arranged side by side, the intensity is the 

coherent one, and thus for two identical bubbles (i.e. the case studied herein), the scattering 

strength due to single scattering is 201og(2) = 6 dB above the scattering strength of the 

single bubble. 

In deriving the coherent intensity it is assumed that bubbles do not interact, an assump- 

tion that is violated when multiple scattering effects are induced owing to the proximity of 

the bubbles. To account for the interaction effects between the two bubbles, the multiple 

scattering series (MSS) will be developed. This will be accomplished with the help of the 

simplest graphical procedure of the Feynman diagrams, a method that was also used by 

Ye and Ding [11] to apply a correction to Foldy's theory. Adapted from Mattuck [17] (see 

pages 12-24) the MSS can be graphed as shown in Fig. 3, where each arrow represents a 
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Figure 3: Diagram of the multiple scattering series for the two bubbles. 

propagation term (describing spherical spreading) and each circle represents scattering from 

a bubble. The two single scattering events described by Eqs. (3) and (4) are shown as the 

first two terms of the series. The third and fourth terms represent the one-way scattering 

events and are written as 

PS12R = PSlfBl(0SBiB2i Rl2)Vi2fB2(ÖB1B2R, ^RJVw, (6) 



and 

PS21R = PS2fB2(8sB2Bl, R2l)'p2lfBl(8B2B1R, RlRjVlR ■ (7) 

The fifth and sixth terms in the MSS represent the double scattering events, which are 

expressed as 

PS121R = PSlfßliösB^i -Rl2)^12fe2(180O, R2l)V2liB\{0B2BlR, RIR)V1R , (8) 

and 

P5212R = PS2fB2(0sB2Bl, #2I)?VBI(180
O
, R^VnhtißB&R, R2R)V2R . (9) 

For brevity, we let 

Z = P2ifBl(180°, fii2)Pi2fs2(180°, R21). (10) 

Higher order terms in the MSS can be written simply by multiplying Eqs. (6), (7), (8) and 

(9) by an appropriate power of Z. For example, the triple scattering terms can be written 

as 

PS1212R = PS12R ■ Z1   and   PS2121R = PS2lR ■ Z   . (11) 

Summing all terms of the MSS results in the total pressure at the receiver, pT, which can 

be written as 

2      2 

PT - Po ■ J2Y1 T=>
SJBK{&SBKR, RKR)VKR+ 

K=l £ = 1 

Vs.fBniOsB.B^R^V^fß^R, RiR)ViR + 

VSKfBK(9sBKBvR,*)'Pl*fBdW>> Ri^iJB^B^R, R.R)VKR x^,      (12) 

where, K ^ £. 

In Eq. (12) the term 1/(1 - Z) arises from the fact that the higher order terms that 

multiply the term in brackets form the series (1 + Z + Z2 + • • ■)> which is geometric. 

For a similar problem the generalized closed form solution obtained by Twersky [13] is 

2U{r) cos(kds'm 0)A/[1 - AH{2d)} where A is the complex scattering function of a monopole, 

r is the distance from the bubbles to the receiver, U(r) describes the propagation from the 



bubbles to the receiver, Ti(2d) is the bubble to bubble propagation term and 9 is the relative 

bearing of the receiver from the pair of bubbles (see Sec. 1.2 in [13]). Note that for our 

specific case of backscattering 0 = 180 degrees, and 7i(r) — e%kr jr. 

Our Eq. (12) is an exact solution for the any two-bubble problem, insofar as the bubble 

scattering function need not assume a purely monopole form. The bubbles can be of different 

size while the geometry of the problem can be arbitrary. Provided the scattering function 

of each bubble is known, and the propagation terms can be determined from the geometry 

of the system, the response of the pair of bubbles can be determined. Equation (12) will 

be used in Sec. 4 to model the experiment. Importantly, our solution reduces to Twersky's 

concise expression for the case of scattering from two identical monopoles. 

2    The response of a single gas bubble in water 

The general solution for scattering from a fluid sphere was derived by Anderson [18], who 

found that the scattered pressure field equals 

oo 

PB = -pinc £ AmPm{cos9)h^(kr). (13) 
m=0 

In Eq. (13) pinc is the pressure field of the wave incident on the sphere, Pm is the Legendre 

polynomial of order m, 6 is the scattering angle, h$ is the order m spherical Hankel function 

of the first kind, k is the wavenumber of the surrounding medium, r is the range from the 

sphere to a point in the field, and the amplitude coefficient Am is given by 

(-,T(2m + l) 
Am~        l + zCm        • (14) 

For a bubble of radius a filled with gas of density pb and speed of sound cb immersed in a 

fluid with density pj and speed of sound cj the coefficient Cm equals 

mjm-i(fcj,fl) - (m + l)jm+i(kba) nm(ka) ^ mnm-i(fca) - (m + l)nm+i(fca) pb cb 

_   m}m^i{ka) - (m + l)jm+1(fca) }m{kba)       mjm_i(fca) - (m + l)jm+i(fca) ps cj 

m]m-i(ho) - (rn + l)jm+i(fcba) jm(ka) _ p^c^ ' 

m)m-i{ka) - (m + l)jm+1(fca) }m{kba)      pf cf 

(15) 



where jm is the spherical Bessel function, nm is the spherical Neumann function and kb is 

the wavenumber for the gas in the bubble. 

We remark that for bubbles very small compared to the wavelength of the sound (ka < 1), 

the solution can be simplified significantly. In this case, the complex scattering function can 

be written as 

*U. = JTY  <16) 

(t) -1-" 
where / is the insonifying frequency, 8 is the total damping coefficient (see Devin [19]), and 

/res is the resonant frequency of the bubble. Note that Eq. (16) is consistent with the 

e~iüjt dependence. When insonified at the resonance frequency / = /res, the amplitude of 

the bubble wall oscillation is maximized, producing the well defined peak in the frequency 

response curve (see Fig. 5a). For an air bubble located at depth z meters in water the 

resonant frequency can be approximated as 

3.25>/l + 0-lz n?v 
/res — 1 V -1   / 

a 

where for a expressed in meters the resonant frequency is obtained in hertz. Note that Eq. 

(16) is independent of the scattering angle. Derivations and additional comments can be 

found in standard texts (e.g., Ref. [20]). For the present case, the variable ka ranges from 

0.2 to 0.35, which is not sufficiently small to allow the use of Eq. (16), and thus we use Eq. 

(13) to calculate the response of the bubble. The primary reason is that the insonified bubble 

oscillates back and forth in response to the forcing of the acoustic wave. The oscillation of 

the bubble will be out of phase with the oscillation of the surrounding medium, owing to the 

difference in density, giving rise to a weak dipole term. Consequently, an additional term, 

provided by Eq. (13), is needed to describe of the pressure field scattered by the bubble. 

Finally, we remark that the general solution only accounts for radiation damping and neither 

viscous nor thermal damping. However, this does not introduce any errors in our calculations 

because for frequencies much higher than the resonant one, the total damping is not affected 

by the viscous and thermal components. Further comments on the differences between the 

general solution and the low ka approximation are presented in Sec. 4. 

10 



Utilizing Eq. (13), the complex scattering function of the bubble is thus given by 

fB(0,r) = ~ J2 AmPm(cos0)h£>(fcr), (18) 
c        m=0 

and should not be confused with the far field form function [21], which is a dimensionless 

representation of the scattered field and is independent of r. Equation (18) represents only 

two modes; the first (m = 0) describes the monopole radiation (breathing mode) of the bubble 

(thus is analogous to Eq. (16) with differences pertaining to aforementioned damping), while 

the second (m = 1) describes the dipole radiation. Higher order modes are suppressed in 

the calculations because they have negligible effect in the ka range of interest. For example, 

if the longitudinal quadrupole mode (m = 2) is included in Eq. (18), then, for a 585 /im 

bubble insonified by an 140 kHz acoustic wave, the magnitude difference in the backscattering 

direction is 

20 log fl!?l;w=0'1'2>) = 0.014 dB . (19) 
V   l*ßlm=0,l   / 

The Legendre polynomial of order zero, P0(cos #), equals 1, while the polynomial Pi(cos 6) 

equals cos# (see [22] page 333), giving 

MM = ~ [A0h
{

0
1}(kr) + Ax cos6h^ikr)} , (20) 

which will be combined with Eq. (12) to model the experiment. 

Numerical results for backscattering from both single bubbles and the pair of bubbles 

will be reported in terms of target strength (TS). For single bubbles, the square of the 

magnitude of fß evaluated in the backscattered direction (6 = 180°) gives the backscattering 

cross section, <7(,s, with TS given by 

TS = 101ogabs, (21) 

in dB re 1 m2. For the pair of bubbles, the total scattered pressure at the receiver px-, given 

by Eq. (12), is related to TS using 

TS = 101og(M»Ü , (22) 
\\Pinc\ ) 

11 



where pinc is the incident pressure at the bubbles and RBR is the distance from the bubbles 

to the receiver. For an exact calculation of the TS, the pressure pinc should be substituted 

by psi and p52 (Eqs. (1) and (2)), while the RBR should be replaced by the distances RlR 

and R2R. 

3    Experimental apparatus and procedure 

The experiments were performed in a plexiglass tank of dimensions 1.2 m x 0.45 m x 0.51 

m (L x W x H) filled with fresh water to a height of 45 cm. Its bottom, front, and back 

walls were lined with anechoic material to reduce reflections, and all the surfaces of the 

tank were thoroughly wetted. The two immersion transducers were arranged in a bistatic 

configuration. The transducers were Panametrics model V1011, with a peak frequency of 

104 kHz and minus 6 dB points at 70 kHz and 140 kHz. All the experiments were performed 

at a frequency range of 80 kHz to 140 kHz, henceforth referred to as "operational frequency 

FUNCTION 
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Figure 4: Experimental apparatus. 
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range". The transducers were inserted in closed-cell Neoprene tubes to reduce the effect 

of reflections from the sides of the tank. The source was driven in a pulse mode using a 

six-cycle tone burst at a very low duty cycle, enabling resolution of the bubble signal. A 

computer equipped with a data acquisition card (1 MHz sampling rate) and data acquisition 

software acquired the amplified signal. A schematic of the apparatus is shown in Fig. 4. For 

each measurement, 20 waveforms were averaged and band-pass filtered, and the root-mean- 

squared voltage of the signal was calculated and squared. 

The system was calibrated using an 18.2 mm radius tungsten-carbide sphere as a reference 

target. The theoretical analysis of the response of the tungsten-carbide sphere to continuous 

waves was based on the work by Faran [23] corrected according to a comment by Hickling [24]. 

The inherent bandwidth associated with a finite pulse was accounted for using a procedure 

described by Foote [25]. 

A fine waxed nylon thread (approximately 150 fim in diameter) held the bubbles in 

place by virtue of the bubbles adhering to it. Leighton et al. [26] studied the resonant- 

frequency properties of millimeter-sized bubbles also by using a wire to which free floating 

bubbles adhered. In their case, the wire alone produced a measurable response, which was 

subtracted from the combined bubble-and-wire response, and good agreement was achieved 

between optical and acoustic sizing. In our work, the thread alone did not return a signal 

above the noise floor, which was approximately 20 dB below the level of the signal from the 

single bubble target. 

The thread was attached to a thin wire frame and positioned on the axis of the combined 

beam, at a depth of 18 cm. The distance from the transducers to the thread was i?0 = 0.58 

m, which puts the targets well into the far field. The Rayleigh distance was 0.5 m at 140 

kHz (see below for explanation). The absorption coefficient for fresh water at 100 kHz is 

about 0.005 dB/m [27] at the tank temperature of 20°C, which for the roundtrip distance of 

1.6 m makes attenuation negligible. 

Bubbles were created using a 26 gauge hypodermic needle. Since the rate of release of the 

bubbles was pressure controlled, there was some variation in the size of the bubbles created, 

13 



an effect that has been investigated by others [28], [29]. However, with practice we could 

produce same-sized bubbles with good consistency. The size of the bubbles was measured 

with the acoustic system and found to be (585 ±35) /im (see Fig. 5). The size was determined 

by comparing the TS of a single bubble measured across the operational frequency range 

with the equivalent best-fit frequency-response curve obtained by Eq. (18), expressed in TS 

according to Eq. (21). Since the response is flat in the operational frequency range, the 

bandwidth of the six-cycle tone burst has no effect in the calculated response which pertains 

to CW excitation.  The size was also checked independently using optical means.  In that 
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Figure 5: Frequency response of a single bubble of radius 585 /im, theory vs data. Graph 

(b) is a detail of graph (a). The middle line is the theoretical response of the 585 /im bubble, 

while the upper line is for a 620 /im bubble and the lower line for a 550 /im bubble. The 

dots and crosses are the means and standard deviations of 18 experiments. 

case a piece of thread was glued on a Petri dish and placed under a microscope, and the 

same procedure was used to produce and place bubbles on the thread as the one used in 

the actual experiments. The optically determined size was (575 ± 40) /im. This includes 

the required correction in the size due to the hydrostatic pressure at a depth of 18 cm. The 

optical system also verified that there was no significant change in the shape of the bubbles 

(see Fig. 6). 
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After the bubbles were created, they rose toward the surface and adhered to a thin metal 

rod. The bubbles, with the aid of the rod, were in turn placed at a predetermined spot on 

the thread a distance d from the combined beam axis of the set of transducers. 

MM»!! 

Figure 6:  Single bubble on the fine thread.   The radius of bubble is (585 ± 35) /im.  Note 

that there is no significant distortion of the shape. 

As soon as the set of bubbles was placed in position, the TS was measured from 80 kHz to 

140 kHz in increments of 2 kHz. When the experiment was completed, a new set of bubbles 

replaced the old one. Each experiment required « 10 minutes. Reduction of the TS due to 

dissolution of the gas during that time was minimal (about 0.1 dB). 

Bubble separation was parameterized using the variable kd, where d is the distance from 

the center of each bubble to the axis of the combined beam. Because of the limited frequency 

range, it was necessary to perform the experiments for several distances d in order to span 

a larger kd range. The minus 3 dB two-way half-angle, <^B/2, at 140 kHz was 3.8°, which 

at R0 = 0.58 m reduced the maximum usable d to 38 mm. Note that this is well within the 

radius of the first Fresnel zone, equal to about 55 mm at 140 kHz. Thus, experimental data 

15 



were acquired for d equal to 0.6, 1.5, 2, 2.5, 3, 5, 10, 15, 20, 25, 30, and 35 mm, and thus 

the variable kd ranged from 0.2 to 21. The distance d was measured with an uncertainty 

of ±0.5 mm. At least four experiments were performed at each position to average out the 

experimental errors associated with the variable size of the bubbles and their positioning on 

the thread. The mean of the measurements is used in Sec. 4 for comparison with the model. 

Finally, two effects brought about by the geometry of the system need to be considered. 

These effects are the directivity pattern of the set of transducers and the directivity pattern 

of the pair of bubbles. The directivity pattern of the transducers reduces the signal level of 

targets that are off the axis of the beam. Therefore, it was necessary to correct the data 

accordingly (since one of the assumptions in the theory was that the targets are on the axis 

of the beam). It is convenient to obtain the two-way beam pattern of the set of transducers 

and model it as the beam of a single transducer of some equivalent diameter. Accordingly, 

transverse profiles of the beam at R0 = 0.58 m, at various frequencies, were obtained using 

a standard target (the tungsten-carbide sphere), and a Gaussian beam profile was fitted to 

the data. Over the operational frequency range, the measured minus 3 dB beamwidth of the 

two-way beam, <f>3dB expressed in degrees, was used to infer an equivalent aperture diameter 

using </>3dB ~ 59(A/L>), giving D « 83 mm. Thus the Rayleigh distance of the transducer 

pair, defined as Rd = irD2/(4\), is Rd = 0.5 m for our highest frequency of 140 kHz. With 

the beam pattern (out to the minus 3 dB level) completely characterized, the correction of 

the data became feasible. 

In addition, since each insonified bubble intercepts and scatters sound, an assemblage of 

them will behave like an array of sources, and two bubbles in line will behave like a two- 

element line array. The directivity pattern of the far-field radiation pressure of a two-element 

broadside line array is [30] 

H(dJ,9) = \e-
ikdsine(l + e«*(2d)sinfl)| (23) 

where d is the distance from the center of a bubble to the axis of the combined beam, / 

is the insonifying frequency, and 0 is the scattering angle. When the two bubbles are side 

by side the pattern is almost omnidirectional; as 2c? increases the main lobe of the array 
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becomes narrower and multiple side lobes appear. This effect was verified experimentally. 

A hydrophone mounted on a translation stage was used to obtain transverse beam profiles 

30 cm from the bubbles. Figure 7 compares the theory and the experimental data. 
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Figure 7: Theoretical directivity pattern for a two-element line array (solid curve) vs exper- 

imental data (dots). Graph (a) shows the pattern for 2d = 11 mm and / = 140 kHz. Graph 

(b) is for 2d = 31 mm and / = 125 kHz. 

4    Results and interpretation 

Considering that the monostatic configuration is a common geometry for many practical 

applications, we decided to co-locate the source and receiver in the model, thus placing 

both transducers at position (x = 0, y = 0) (see Fig. 1), and correct the experimental data 

utilizing the predetermined directivity patterns of the transducers and the bubbles. The 

constants used in all of the simulations were: (a) speed of sound c = 1490 m/s; (b) mean 

bubble radius a = 585 /im; (c) distance from transducers to set of bubbles R0 = 0.58 m; (d) 

depth of bubbles z = 0.18 m. Based on the known geometry of the system, the propagation 

terms were established and, with the incorporation of Eqs. (18) and (22), the TS at the 

receiver was calculated. Figure 8 shows the theoretical curve for backscattering at 110 kHz 
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Figure 8: Theoretical curve for backscattering from two 585 yum bubbles at a frequency of 

110 kHz and variable d, which is the distance from the combined beam axis to the center of 

each bubble. 
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versus kd, with straight lines representing the coherent and incoherent scattering from two 

identical bubbles. The oscillatory behavior is brought about by the interference of the waves 

scattered between the bubbles. For the specific case shown in Fig. 8 the first maximum 

occurs at kd « 1.6, with successive maxima occurring every Tkd ~ 3.2. This implies that 

constructive interference results for 

A 
r^j 2d 

while destructive interference results for 

..(2a + l)-       (a = 0,l,2,3,---), (24) 
max,» /, 

2d K a 
mm,a 

A. (25) 

Note that the amplitude of the oscillation diminishes with increasing kd; for kd —> oo the 

curve asymptotes to the exact coherent backscattering level. (Simulations showed that Eqs. 

(24) and (25) hold true across the operational frequency range). 

In Figs. 9a and 9b several theoretical curves (solid lines) for backscattering at fixed 

frequencies and variable d are compared with experimental data (dots). The black line 

represents backscattering from two 585 /mi bubbles, this radius being our best estimate of 

the mean size of each bubble. The two gray lines represent calculations pertaining to two 

bubbles each of radius 620 /um (upper line) and 550 yum bubbles (lower line). As mentioned 

in Sec. 3, 35 /J,m is our best estimate of the standard deviation of the expected bubble radius; 

thus, these curves represent bounds to the experimental results. 

The scattering calculations were carried out for fixed frequency (as shown in Figs. 9a 

and 9b) and variable d. The calculated pressure was then expressed in terms of target 

strength and plotted against the parameter kd. The data are the ensemble average of the 

multiple experiments at each position. For clarity, the standard deviation of each measure- 

ment is not shown. It varied between ±0.2 dB to ±1 dB, depending on the proximity of 

the bubble signal to the noise floor (explained below). To compare the data with the sim- 

ulations, the corrections mentioned in Sec. 3 were applied to the data. More specifically, 

the fitted Gaussian beams (over the operational frequency range) were used to calculate the 

loss (in dB) due to the bubbles being off axis of the combined beam of the transducers, 

19 



-60.5 

-60.5 

-60.5 

-64 

-60.5 

(a) 

Figure 9a: Theoretical curves for backscattering from two bubbles of radius (585 ± 35) /xm 

for fixed frequency (as shown) and variable d versus experimental data (dots). The black line 

represents backscattering from two 585 jum bubbles. The data are bounded by the responses 

of two 620 pm bubbles (upper gray line) and two 550 ^m bubbles (lower gray line). 
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Figure 9b: Theoretical curves for backscattering from two bubbles of radius (585 ± 35) fjm 

for fixed frequency (as shown) and variable d versus experimental data (dots). The black line 

represents backscattering from two 585 jum bubbles. The data are bounded by the responses 

of two 620 jum bubbles (upper gray line) and two 550 ^m bubbles (lower gray line). 
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while Eq. (23) was used to determine the loss (in dB) of the pressure at the receiver due to 

the pattern of the two-bubble array. The losses calculated were added to the measured TS 

to approximate the monostatic configuration for which the bubbles are on the axis of the 

combined beam. 

In Figs. 9a and 9b the theoretical curves model the response to CW excitation. However, 

data was acquired using a six-cycle tone burst, which reduces the effects of multiple scattering 

as the distance between the two bubbles increases. To see how the tone burst influences the 

maximum kd that includes multiple scattering effects, we let ton be the on time of the tone 

burst and tT be the time it takes sound to travel from one bubble to the neighbouring one. 

Then, we can write 
ton   T ' cycles (OP,\ 

tr kd 

where, the variable cycles represents the number of cycles in the tone burst. Considering 

that the length of the pulse should be at least two times 2d to observe multiple scattering 

effects, we deduce that kd < 9, for a six-cycle tone burst. For higher kd the absence of 

significant interaction between the bubble will result in coherent scattering, equal to the TS 

of a single bubble plus 201og(2). 

The experimental data agree reasonably well with the response predicted by the model. 

For kd > 9 the backscatter can be modeled as purely coherent, since the interaction effects 

are negligible and the scatter resembles single scattering. The increased scatter of the ex- 

perimental data for kd > 7 is due to beam width and directivity of the two-bubble array. As 

the separation between the bubbles increased, they fell off the axis of the combined beam 

of the transducers and, at the same time, the main lobe of the two-bubble array became 

narrower. Therefore, the signal received became weaker with increasing bubble separation, 

and the TS approached the noise floor (which was equivalent to a scatterer with TS equal 

to -80 dB, while located on-axis of the beam). 

For kd < 1.6 the backscattered radiation level is reduced considerably, presumably due to 

the effect of the mutual radiation impedance. The pressure radiated from one bubble applies 

a force to the neighboring one, altering in the process its radiation impedance, which becomes 
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Figure 10: Photograph of two bubbles separated by center-to-center distance 2d ~ 1.2 mm, 

equivalent to kd RS 0.2 at 80 kHz. 

a sum of the self and mutual radiation impedances. As kd —Y 0 reactance dominates, and the 

velocity of the fluid particles are out of phase with the pressure and therefore reradiation is 

less efficient. Note that this is very similar to the problem of interactions between closely 

packed elements of arrays [31], [32]. Interestingly, when kd falls below 0.3, the TS approaches 

that of a 740 fim bubble, i.e. a bubble with a volume equal to twice the volume of a 585 fj,m 

bubble. At kd fa 1.6 the individual waves scattered from the bubbles add in phase, while the 

bubbles are not sufficiently far from each other that the dipole term is unimportant. The 

combination of the increased magnitude and the constructive addition of the phases of the 

waves results in excess radiation. Note that the transition from reduced scatter to excess 

scatter to coherent scatter occurs very rapidly. 

Finally, it should be mentioned that the incorporation of the complex scattering function 

for ka <C 1 in the model (or in Twersky's concise expression mentioned in Sec. 1) produced 

similar results with less computational strain.    However, there were two differences that 
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necessitated the use of the general solution. First, the magnitude of the frequency response 

for a single bubble calculated with the low ka approximation results in increased backscatter 

levels, since ka is nominally 0.3 for our case. For example, at 140 kHz the TS calculated using 

Eq. (16) is about 0.65 dB higher than the TS calculated using Eq. (18), an error that carries 

over in the outcome of Eq. (12). Second, the amplitude of the oscillation (e.g. that seen 

in Fig. 8), when calculated using the multimodal scattering function in Eq. (12) is slightly 

higher than this amplitude when calculated using the simplified scattering function. The 

reason is that the amplitudes of the scattered waves, which depend on scattering angle and 

distance from the bubble, are correctly accounted for, by the combination of Eqs. (18) and 

(12). Admittedly, these differences are subtle for the geometry studied here (i.e., monostatic 

configuration and symmetrically arranged bubbles normal to the incident wave). However, 

we emphasize that our modeling approach is a general one that can be used with almost no 

modifications for bubbles with high ka, arbitrary sizes, and scattering geometries. This will 

be exploited in future work. 

5    Summary 

The problem of backscattering of sound from two bubbles was studied theoretically and ex- 

perimentally in the frequency range 80-140 kHz. An exact, closed-form solution, based on 

the expansion of the multiple scattering series, was derived and used to model the backscat- 

tering response of the two bubble system. Well-controlled experiments were performed by 

insonifying two identical bubbles attached to a fine thread, at an angle of 90° with respect 

to the two-bubble axis. The radius a of each bubble was 585 /mi, which translates to a ka 

range of 0.2-0.35, where k is the wavenumber of the medium. By varying the separation 

distance d between each bubble and the axis of the two-way beam, we spanned the range 

of kd from 0.2-21. The thread did not register a signal above the noise floor; furthermore, 

measurement of the size of single bubbles showed that it did not interfere with the response 

of the bubbles. Comparison of the numerical model and the experimental data showed good 
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agreement. The constructive and destructive interference of the multiply scattered waves in- 

duces an oscillation about the exact coherent scattering level, with diminishing amplitude for 

increasing separation. At kd « 1.6 (2d ~ A/2) the backscattered radiation was maximized, 

while for kd < 1.6 (2d < A/2) interference effects resulted in reduced pressure levels. 
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A    Appendix 

In Sec. 2 the pressure field scattered by a bubble was written as 

oo 

PB = -Pine £ AmPm(cosß)h^(kr). (Al) 
m=0 

It was established that in the ka range 0.2-0.35 only the modes zero and one are signifi- 

cant, therefore, Eq. (Al) (normalized) can be written as 

P*- = -[AO hj,1} (kr) + A, cos 6 h[1](kr)] . (A2) 
Pine 

The spherical Hankel functions of order zero and one can be expressed in terms of the 

free-field Green's function as 
i eikr 

k   r 

and 
„.■Ar  n       i 

Ww-rr(i + h)- (A4) 

By substitution of Eqs.  (A3) and (A4) in Eq.  (A2), the normalized scattered pressure 

field becomes 
,' Jkr r /I        1 \i 

(A5) 
Pine K     r      L \l iZT 
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Study of Eq.  (A5) reveals that in the far field the monopole term is clearly dominant. 

For example, for backscattering at 140 kHz 

20 log 
Aohg\kr) 

AlCos0h\l>(kr) Wi 
20 log 

\M 
18.95 dB. (A6) 

■M-i)\j 

In the near field the weak dipole term becomes important, but the breathing mode of the 

bubble remains responsible for most of the energy reradiation. Therefore, propagation of 

the scattered pressure approximates spherical spreading.   In Fig. 11 we graph Eq.   (A5) 

Figure 11:  Comparison between Eq.  (A5) (circles) and the normalized spherical spreading 

approximation 1/r (dots). 

(circles) against the normalized spherical spreading approximation 1/r (dots) for two cases: 

(a) 0 = 90° and (b) 6= 180°. 

In the first case, the dipole term has no effect, since cos 90° = 0, therefore the agreement 

between the actual pressure reduction and spherical spreading is practically perfect. In the 

second case, the dipole term has maximum effect, since cos 180° = — 1, which is evident in 

the difference between the exact and approximate solution. However, the difference is small 

enough to validate the approximation of spherical spreading in the near field of the bubble. 
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